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ABSTRACT

In this work we developed two Pytorch libraries using the PyTorch RPC interface for distributed deep
learning approaches on high resolution images. The spatial decomposition library allows for distributed
training on very large images, which otherwise won’t be possible on a single GPU. The domain parallelism
library allows for distributed training across multiple domain unlabeled data, by leveraging the domain
separation architecture. Both of those libraries were tested on the Summit supercomputer at a moderate
scale, and we are releasing the code for both of them.

1. INTRODUCTION

Deep learning training is computationally expensive, but usually leadership computing facilities and large
cloud services can keep up with the growing datasets in terms of volume. The most commonly used
distributed approach is data parallel, were most deep learning frameworks offer mature solutions. Usually
it requires some performance tweaks to get linear weak scaling, images/sec, but most default knobs will
give good performance at a moderate scale. On the other hand, running on data-parallel at very large scale
to optimize time-to-solution can be challenging because of convergence to solution issues, such as the
generalization gap [6]. Also it is usually impractical to do an extensive hyper-parameter search at very
large scale, since parameter space is changing for different scales.

Model parallel approaches are on higher demand, due to the increasing sample size of the datasets and deep
learning models are becoming more complex. Usually this approaches are less flexible and require a
significant effort and expertise to adjust from the single-GPU implementation to a multi-GPU solution. On
the other hand, usually they don’t change the parameter space of the problem, as data-paralle approaches
do, and usually they don’t need a new hyper-parameter search. Tensorflow already has a library that
implement receipts for model parallel approaches, [3]. Pytorch on the other hand recently introduced a
distributed framework that allows automatically differentiate and distribute gradients across machines:
PyRPC. We expect PyRPC to be a very popular API for distributed automatically differentiation on
accelerators in the future, and even though as of Pytorch 1.9, PyRPC is still in beta version in terms of
CUDA support, performance improvements are expected in later versions. In this note we are fully
utilizing the PyRPC functionalities for our approaches.

We have implemented two libraries, one for spatial decomposition, called BigConv, based on [3], and one
for domain parallelism, called Multi-DSN, by parallelising this [1] architecture. On modern deep learning
applications we see a rapid increase of the image-size and model size, and the GPU memory capacity
sometimes can’t keep up with the memory demand. Usually compromises need to be made to fit on a
single GPU which might affect the overall performance. BigConv tries to address exactly this by splitting
on non-overlapping patches large images and distributing train training across GPUs. For example some of
the most common areas that produce very large 2D/3D datasets are medical, microscopy and geospatial
sciences.

At the same time, these domain areas can have multiple instrument sources for the same target, for example
different angles of a satellite for the same geographic location, or different medical scanning methods
targeting the same body area. Usually it is impractical to have detailed labels for all those data, and
un-supervised or semi-supervised approaches are used. Domain separation network [1] targets this
challenge by using a domain adaptation method. Our implementation, Multi-DSN, offers a distributed



approach to this architecture, so a large number of domains can be trained at the same time, with potential
to have larger models as well. In the following sections we describe the implementation of those libraries,
and the test runs that we performed.



2. SPATIAL DECOMPOSITION LIBRARY

Deep convolutional neural networks have evolved to obtain impressive predictive performance for a variety
of computer vision tasks. The networks are designed as a series of local operations like pooling and
convolution, along with pixel-by-pixel operations such as batch normalization, skip connections, and
activation functions. Through composition, these local operations combine to form a much larger
"receptive field" indicating how many pixels are available in the field of view when computing each pixel
of a feature image. Recent work in convolutional neural network design has focused on increasing the
receptive field in order to make better use of coarse-scale information while retaining fine-scale feature
resolution. Doing so requires computation of networks with large activation tensors and the use of
high-resolution images that are large enough to contain enough context to be useful.

The central challenge to computation of these models is the limited memory size on modern GPUs. For
example, a single GPU on Summit contains 16GB of video RAM, limiting the size of a trainable
DenseNet121 [4] model to a size of roughly 1024x1024 pixels. This limits the use of large expressive
networks as they cannot be trained on an individual GPU for the image sizes needed to exploit the
resolution and context the network was designed to exploit. In addition, there is a number of domains that
have ultra high resolution images, such as in geospatial or medical domain, that can be in the order of

10° x 103 pixels, which they can’t fit even on a smaller GPU cluster, with a moderate size neural network.

2.1 IMPLEMENTATION

Figure 1. An illustration of the spatial decomposition library. In this picture each worker corresponds
to a single GPU, and two communication paradigm are applied: all-reduce with Pytorch Data-Parallel and
asynchronous calls with Pytorch RPC.

In order to overcome this barrier, we implemented a paradigm called spatial parallelism, using PyTorch
RPC, as shown in Figure 1. In this approach, we first initialize RPC and Data-Parallel master and workers
in Pytorch. The image domain is then parallelized automatically into a spatial grid according the image
size, dimension and the total number of workers that are given. Each grid location corresponding to an
RPC worker and in our case each worker is mapped to a GPU. Each worker holds each own chunk of data
and computes a convolutional "block", requiring context from neighboring grid locations (called halos) that



are exchanged before computing the block. In the forward pass the workers exchange a small number of
rows and columns from the left and right neighbor grids, depending on the filter and padding size, and the
outermost grid workers that don’t have neighbors are padding with zeros for the remaining rows and
columns. All those communication calls are handling with RPC asynchronous calls. In the backward pass,
apart from the data from the forward calculation, weights need to be shared among workers for the
optimization, and we use all-reduce communication offered in the Pytorch Data-Parallel paradigm. After

those communications are setup, PyTorch RPC enables us to automatically backpropagate gradients, even
across node boundaries in the cluster, including these halo exchange steps.

We have implement four very basic models to test our library, i.e. CNN1D, CNN2D, CNN3D and FCN2D.

In all cases we confirmed identical values for predictions and gradients between our approach and the

single GPU implementation of those models. In the following section we test the memory size as a
function of the input vector for those models.

2.2 SPATIAL DECOMPOSITION TEST RUNS

In this section we present the maximum memory used and the average GPU utilization for four models:
CNNI1D, CNN2D, CNN3D and FCN2D on various input size images. In all cases we used batch size of

one, so training one image at a time to get the very minimum memory requirement. In realistic training

conditions it will require a larger batch size of a good optimization, and so the following results will be
more pronounced in real cases.
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Figure 2. The Figure shows the maximum memory used and the average GPU utilization on an

NVIDIA-V100 GPU. We used a vanilla CNN1D model for various 1D input size vectors with batch size of

one. The nvidia-smi tool was used to acquire data for the plots.

Figure 2 shows the memory limits for a simple CNN1D model for various input size vectors. The single
GPU implementation, shown in the blue curve, can fit up to 8M size 1D vectors, before we run out of
memory. After that limit we have to use the spatial decomposition approach, as described in the previous
section to distribute the memory across GPUs. The orange curve shows smaller memory footprints for
vector sizes that can fit on a single GPU, and can go twice the size of the single GPU 1D implementation
using six GPUs. We also show the case of 12 GPUs, without exploring the out of memory limitations there



It is important to note that we are using the Summit HPC system for this studies, were one Summit node

has six GPUs. The reason we show 12 GPUs is precicily to demonstrate the capability of breaking the node
barries with Pytorch RPC and use a very large number of GPUs if need it.
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Figure 3. The Figure shows the maximum memory used and the average GPU utilization on an
NVIDIA-V100 GPU. We used a vanilla CNN2D model for various 2D input size vectors with batch size of

one. The nvidia-smi tool was used to acquire data for the plots.

Figure 3 shows the memory limits for a simple CNN2D as a function of 2D input vectors. The single GPU
implementation limits us to go beyond a 2200x2200 pixel image where on the SGPU case we can go up to
4Kx4K pixels, and using 10GPUs we can fit even a 6Kx6K pixels. Even in the 1Kx1K pixel image if we
compare the single GPU case, with the 10 GPU case, the memory foot print is three times lower, which is
an indication that we can fit much deeper models if we use our spatial decomposition method.
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Figure 4. The Figure shows the maximum memory used and the average GPU utilization on an
NVIDIA-V100 GPU. We used a vanilla CNN3D model for various 3D input size vectors with batch size of

one. The nvidia-smi tool was used to acquire data for the plots.

Figure 4 shows the memory limit for a simple CNN3D as a function of 3D input vectors. Here we can see



immediately that fitting naturally 3D data on a single GPU limits significantly the input size of the image
and some type to distributed memory approach is need it. Specifically for the single GPU case we can’t go
beyond 170x170x170 image size, and given that the size of our model is as small as we can go and we only
use batch size of one, some type of cropping or down-sampling needs to be perform for the single GPU
case. In addition, the way we make the partition of the data, we need to exceed the single node limits for

Summit to perform spacial decomposition. We use 9 GPUs were we can fit up to 300x300 3D vectors, and
using 28 GPUs we can fit 400x400 pixel images.
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Figure 5. The Figure shows the maximum memory used and the average GPU utilization on an
NVIDIA-V100 GPU. We used a vanilla FCN2D model for various 2D input size vectors with batch size of

one. The nvidia-smi tool was used to acquire data for the plots.

Figure 5 shows the memory limit for an FCN2D model [7] as a function of 2D input vectors. This is a
realist network architecture, though far from state-of-the-art, that has been used extensively with image
data for semantic segmentation. There we can see the memory foot print isn’t reduced as much between
single GPU and multi-GPU implementation. This is expected since we already using an expensive
network. We see though that we can only go up to 1500x1500 2D input vector size without using spatial

decomposition, and as we go on higher resolution images we need to use RPC. With our 10 GPU
implementation we can go up to 4500x4500 pixel image sizes.

In terms of GPU utilization, we can see a general trend that no-RPC case is better utilized than RPC case.
This is expected since for the no-RPC case there are no worker communication and all the calculation stays
on GPU, once it is loaded. In the spatial decomposition case, there is the overhead of the communication
between workers. Also in the RPC version that we are using the GPU-GPU communication wasn’t
available and so we have to go to CPU to make the communication between workers. In Pytorch 1.9,
NCCL is supported for GPU-GPU communication, but even there the RPC is on beta version in terms of
CUDA support, so we should expect better performance in later Pytorch versions. On the other hand we
see better utilization as we increase the number of workers for the same input image. Most likely this is

because with more workers we can train faster the same image, since each worker computes a smaller
chunk of data, and so better utilize the hardware.



3. DOMAIN PARALLELISM LIBRARY

One of the biggest challenges in supervised learning is the lack of detailed labeled data. This is a common
problem in science too, as data is often heterogeneous and label availability varies greatly. Data are usually
been acquired by different instruments, for example on medical field varying medical instruments can
target same parts of the body making a dataset very heterogeneous. Also different conditions of acquisition,
for example varying satellite angles, or different geographic locations can make labeled data on all cases an
ideal situation that don’t reflect realistic datasets.

Domain separation networks [1], DSN, are addressing this challenge by learning at the same time from
label and unlabeled domains and keeping domain-invariant feature across the dataset. In the original DSN
implementation there is a source domain with labeled data, and a target domain with unlabeled data. Both
are inputs to the network at the same time, and each one has two encoder/decoder network: the private
enoder helps to keep the invariant features across domains, and the shared helps on mapping the shared
representation between domains.

DSN is computationally very expensive to train due to the many orthogonal components of the network,
and also due to the multiple image inputs. Even with a very small encoder/decoder part of the network, we
can’t fit on an NVIDIA-V100 GPU larger than 768x768 pixels with batch size of two. If we wanted to use
higher resolution images, or more realistic classification networks we would immediately be out of
memory. Also in most realistic situations there are more than two domains, or more that two variations
from the original dataset, that are lacking of labels and so to be able to train those network architectures a
distributed memory approach is need it.

3.1 IMPLEMENTATION

Figure 6 shows our approach to distribute memory across GPUs for the DSN architecture, for multiple
domains. In this approach, we first initialize RPC and Data-Parallel master and workers in Pytorch. Then
each private and shared encoder is assigned to a worker/GPU, and has each own input image. The latent
space is been calculated in each worker separately, were the shared encoder shares weights between them
using all-reduce with the Pytorch Data-Parallel paradigm. Once all the latent space is been calculated, we
use RPC asynchronous calls to calculate the losses, and continue with reconstruction and classification on a
separate worker/GPU. The gradients are propagated automatically with Pytorch RPC across GPUs.

The big advantage of our method, apart from reducing the memory footprint of the network, is that in
principle we can train at the same time a very large number of domains, since we assign workers beyond
the node boundaries, and the limitation might come from the communication size. In the following section
we test the memory limit as we include up to seven domains with unlabeled data.

3.2 DOMAIN PARALLELISM TEST RUNS

Figure 7 shows the memory limits of using the single GPU implementation of DSN against our domain
parallel implementation. The one-source-one-target implementation on a single GPU is the same
architecture as in the original DSN paper [1] . The one-source-one-target implementation on six GPUs is
our domain parallel implementation where each encoder is mapped to a worker. The
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the latent space of each encoder is done with PyRPC asynchronous calls. The shared encoders also share
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Figure 7. The Figure shows the maximum memory used and the average GPU utilization on an
NVIDIA-V100 GPU. We used the DSN architecture, as shown in [1] for the one-source-one-target case,
and the DNS architecture as shown in Figure 6 for the multi-GPU case. The one-source-one-target on six

GPUs, and the one-source-four-target and one-source-seven-target are shown using Pytorch RPC for

various input size vectors, with batch size of two. The nvidia-smi tool was used to acquire data for the plots.

one-source-four-targets, and one-source-seven-targets is again with our approach and assuming we have
one source data with labels and four and seven domains respectively without labels.

For the single GPU implementation we are already very close to the maximum memory capacity of the



NVIDIA-V100s GPU by fitting a 768x768 2D size vector, using just batch size of two and with a very
simple encoder/decoder network. Using our distributed approach for the same architecture, we can see on
the one-source-one-target six GPU implementation the memory footprint is already reduced by few GBs.
In that sense we have the capability to fit larger models, in order in order to increase the size of the effective
receptive field, and eventually the accuracy of the model.

In addition, the memory footprint for the parallel implementation of one-source-one-target,
one-source-four-target and one-source-seven-target remains flat. This is expected since even though we
increase the number of unlabeled domains, the model size and the number of input images stays the same
per GPU, since we distribute the load of private and share encoders to more workers/GPUs. In principle we
can scale this number very high until it becomes communication bound, primarily due to the sharing
weights among the encoders.

In terms of GPU utilization, we can see that resources are better utilized for no-RPC implementation
compare with the parallel approach. This is no surprise since, in the former case a much larger network
needs to be computed compare to the latter case. Also in the non-RPC implementation there are no workers
and so no overhead by communication between them. On the other hand we can see mostly a flat and very
low utilization as we increase the number of domains. That most likely reflects the fact that our encoders
are very small compare to the GPU capacity and we have much more room to fill out more effectively the
resource, with either larger model or higher resolution images.



4. CONCLUSION

In this work we developed two Pytorch libraries that target distributed memory applications for high
resolution images. We showed that both libraries, as designed, reduce the memory footprint of the single
GPU implementation for the same model architecture. Also with our approach we increase the scaling
capability for distribute training on high resolution images from multiple domains, something that isn’t
possible for the single GPU case. By doing spatial decomposition, naturally we can train ultra-high
resolution images, and study the effect of increasing the receptive field for finer scale feature resolution. As
far as we can tell this is the first implementation of spatial decomposition in Pytorch. Mesh-TensorFlow [3]
offers spatial partition for some particular models as well as the LBANN framework [2]. With domain
parallelism, we can train images from multiple domains, and one can study in detailed the effect in model
accuracy of training with a few labeled data, along with a large scale unlabeled data from multiple domains.

Both developed distributed approaches are orthogonal to each other, along with data-parallelism and
pipeline parallelism [5] and can run at the same time. For example we can think of an ideal use scenario for
all four: We have an experimental instrument that produced ultra-high resolution 3D images, and we need a
very deep 3D model for a specific task that labels are available for some conditions but not for the majority.
Starting with the distributed DSN architecture, as described in Figure 6, each DSN encoder worker can
occupy few nodes each with few GPUs. Then each DSN worker can perform spatial parallelism with some
GPUs from each node, in order to fit this very large 3D images, and within each node model pipeline
parallelism can be made with the remaining GPUs to fit the large 3D model. In principle in this approach
so far we haven’t changed the parameter space of the task at hand, but we have rather distributed across
machines. Now if the data size is large, we can also apply data parallel on top, where each of the above
setup will be copied on a number of GPUs, and all-reduce will be used for communication between them
for sharing weights.

As our next step we would be working on applying the above libraries on a real application so that we can
study how this capability can be translate to a better model accuracy, which is the ultimate goal. We release
the code for both libraries and it can be found here: https://code.ornl.gov/ai/scalability/multi-dsn,
https://code.ornl.gov/ai/scalability/bigconv. For the spatial decomposition library we are going to provide
soon models for UNet3D, and DenseNet. Also it is worth noting that the original proposed DSN
architecture is very general and adaptive, and so the same principles for the domain parallelism can be used
with different encoder-decode architectures, or other than classification tasks, such as segmentation or
object detection. Finally, as it was discussed in the introduction section, the throughput (images/sec)
performance isn’t as expected, and in most studied cases it is comparable with the single GPU
implementation. When Pytorch releases a more stable CUDA support pyRPC versions, we would start
optimizing throughput performance for both libraries, and we will provide examples with GPU-GPU direct
communication for both implementations.
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